Preliminary report on methane emissions from the Three Gorges Reservoir in the summer drainage period.
نویسندگان
چکیده
Recently reported summertime methane (CH4) emissions (6.7 +/- 13.3 mg CH4/(m2 x hr)) from newly created marshes in the drawdown area of the Three Gorges Reservoir (TGR), China have triggered broad concern in academic circles and among the public. The CH4 emissions from TGR water surfaces and drawdown areas were monitored from 3rd June to 16th October 2010 with floating and static chambers and gas chromatography. The average CH4 emission flux from permanently flooded areas in Zigui, Wushan and Yunyang Counties was (0.33 +/- 0.09) mg CH4/(m2 x hr). In half of these hottest months of the year, the wilderness, cropland and deforested drawdown sites were aerobic and located above water level, and the CH4 emissions were very small, ranging from a sink at 0.12 mg CH4/(m2 x hr) to a source at 0.08 mg CH4/(m2 x hr) except for one mud-covered site after flood. Mean CH4 emission in flooded drawdown sites was 0.34 mg CH4/(m2 x hr). The emissions from the rice paddy sites in the drawdown area were averaged at (4.86 +/- 2.31) mg CH4/(m2 x hr). Excepting the rice-paddy sites, these results show much lower emission levels than previously reported. Our results indicated considerable spatial and temporal variation in CH4 emissions from the TGR. Human activities and occasional events, such as flood, may also affect emission levels. Long-term CH4 measurements and modeling in a large region are necessary to accurately estimate greenhouse gas emissions from the TGR.
منابع مشابه
Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China
Anthropogenic activity has led to significant emissions of greenhouse gas (GHG), which is thought to play important roles in global climate changes. It remains unclear about the kinetics of GHG emissions, including carbon dioxide (CO2), methane (CH4) and nitrous Oxide (N2O) from the Three Gorges Reservoir (TGR) of China, which was formed after the construction of the famous Three Gorges Dam. He...
متن کاملTemporal variation of methane flux from Xiangxi Bay of the Three Gorges Reservoir
Three diel field campaigns and one monthly sampling campaign during June 2010-May 2011 were carried out to investigate the CH4 flux across the water-gas interface in Xiangxi Bay of the Three Gorges Reservoir, China. The average CH4 flux was much less than that reported from reservoirs in tropic and temperate regions. The photosynthesis of phytoplankton dominated the diel gas fluxes during alga ...
متن کاملWater Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment
The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources,...
متن کاملAN EXPERIMENTAL INVESTIGATION OF GRAVITY DRAINAGE DURING IMMISCIBLE GAS INJECTION IN CARBONATE ROCKS UNDER RESERVOIR CONDITIONS
Gravity drainage is one of the important recovery mechanisms in fractured carbonate and conventional reservoirs. It occurs due to density difference between the gas in fracture and the oil in matrix as well as in conventional tilted reservoirs. Oil phase will form films which are produced under gravity forces (film flow). Many gas injection experiments have been done on laboratory scales with d...
متن کاملMethane formation and consumption processes in Xiangxi Bay of the Three Gorges Reservoir
Indoor simulation experiment was carried out to evaluate the formation and consumption rates of methane (CH4) in Xiangxi Bay of the Three Gorges Reservoir (TGR), China. The results show that both the CH4 formation and consumption rates were significantly positively correlated with temperature. CH4 efflux decreased with rising temperature due to its potential increasing oxidation rate. CH4 oxida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2011